
Chapter 2: Operating System Services
and Structures

A View of Operating System Services

Operating System Services

 Operating systems provide an environment for execution of

programs and services to programs and users

 One set of operating system services provides functions that are

helpful to the user:

User interface - Almost all operating systems have a user interface (UI).

 Command-Line (CLI), Graphics User Interface (GUI)

Program execution - The system must be able to load a program into memory and

to run that program, end execution, either normally or abnormally (indicating error)

Operating System Services

I/O operations - A running program may require I/O, which may involve a file or

an I/O device

File-system manipulation - Programs need to read and write files and

directories, create and delete them, search them, list file Information,

permission management.

Communications – Processes may exchange information, on the same

computer or between computers over a network

Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user

program

Operating System Services

 Another set of OS functions exists for ensuring the efficient operation

of the system itself via resource sharing

Resource allocation – When multiple users or multiple jobs running concurrently,

resources must be allocated to each of them

Accounting - To keep track of which users use how much and what kinds of

computer resources

Protection and security - The owners of information stored in a multiuser or

networked computer system may want to control use of that information,

concurrent processes should not interfere with each other

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level Application Programming

Interface (API) rather than direct system call use

 Three most common APIs are

 Win32 API for Windows

 POSIX API for POSIX-based systems (including virtually all versions of

UNIX, Linux, and Mac OS X)

 Java API for the Java virtual machine (JVM)

Example of System Calls

Consider the ReadFile() function in the Win32 API

Behind the scenes, the functions that make up an API typically invoke the

actual system calls within the kernel on behalf of the application programmer.

Example of System Calls

 System call sequence to copy the contents of one file to another file

Example of Standard API

API – System Call – OS Relationship

System call interface: run-time support library (set of functions built into libraries

included with compiler)

Standard C Library Example

 C program invoking printf() library call, which calls write() system call

Types of System Calls
 Process control

 end, abort

 load, execute

 create process, terminate process

 get process attributes, set process

attributes

 wait for time

 wait event, signal event

 allocate and free memory

 File management

 create file, delete file

 open, close file

 read, write, reposition

 get and set file attributes

 Device management

 request device, release device

 read, write, reposition

 get device attributes, set device attributes

 logically attach or detach devices

 Information maintenance

 get time or date, set time or date

 get system data, set system data

 get and set process, file, or device attributes

 Communications

create, delete communication connection

send, receive messages

transfer status information

attach and detach remote devices

Examples of Windows and Unix System Calls

System Services

 Provide a convenient environment for program development and execution.

They can be divided into:

 File management

 Status information

 File modification

 Programming-language support

 Program loading and execution

 Communications

 Background Services

 Application programs

 Most users’ view of the operation system is defined by system programs, not

the actual system calls

Implementation

 Much variation

• Early OSes in assembly language

• Then system programming languages like Algol, PL/1

• Now C, C++

 Actually usually a mix of languages

• Lowest levels in assembly

• Main body in C

• Systems programs in C, C++, scripting languages like PERL,
Python, shell scripts

Operating System Structure

 General-purpose OS is very large program

 Various ways to structure ones

• Simple structure (monolithic) – MS-DOS

• Layered – an abstraction

• Microkernel – Mach

• Modules – Solaris

What goesintoan OS?

System Call Interface

Device Drivers

Memory
Management

CPU
Scheduling

File System
Management

Networking
Stack

Inter Process
Communication

Simple Structure (monolithic)

 Many commercial systems do not have well-defined structures.

 Frequently, such operating systems started as small, simple, and

limited systems and then grew beyond their original scope.

 Example: MS-DOS

 Not divided into modules

 Although MS-DOS has some structure, its interfaces and levels of

functionality are not well separated

Monolithic Structure

• Linux, MS-DOS, xv6
• All components of OS in kernel space

• Cons: Large size, difficult to maintain, likely to have more bugs, difficult to verify

• Pros: direct communication between modules in the kernel by procedure calls

System Call Interface

Deice Drivers

Memory
Management

CPU
Scheduling

File System
Management

Networking Inter Process
Stack Communication

User Space Processes

K
er

ne
ls

pa
ce

Monolithic Structure – Original UNIX

 UNIX – limited by hardware functionality, the original UNIX operating
system had limited structuring.

 The UNIX OS consists of two separable parts

• Systems programs

• The kernel

 Consists of everything below the system-call interface and
above the physical hardware

 Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a large
number of functions for one level

Traditional UNIX System Structure

Beyond simple but not fully layered

Layered Approach
 The operating system is divided into a number

of layers (levels), each built on top of lower

layers.

 The bottom layer (layer 0), is the hardware; the

highest (layer N) is the user interface.

 With modularity, layers are selected such that

each uses functions (operations) and services

of only lower-level layers

 Benefits:

simplicity of construction and debugging

 Detriments:

Appropriately defining the various layers

Less efficient than other types

Layered Approach

Layered Approach

Microkernels

 only absolutely essential core OS functions should be in the kernel.

 Less essential services and applications are built on the microkernel and

execute in user mode.

 Example: Mach Carnegie Mellon University

 Typically, microkernels provide minimal process and memory management,

in addition to a communication facility between the client program and the

various services that are also running in user space

Microkernel

• Kernel has basic inter process
communication and scheduling

– Everything else in user space.
– Ideally kernel is so small that it fits

the first level cache

• Highly modular.
– Every component has its own

space.

– Interactions between components
strictly through well defined
interfaces (no backdoors)

User Space Processes

F
ile

M

a
na

g
em

en
t

P
ro

ce
ss

S

e
rv

e
r

D
ev

ic
e

D

ri
ve

rs

P
a

ge
r

Microkernel
(interprocess communication,

scheduling)K
e

rn
e

ls
p

a
ce

Eg. QNX and L4

Microkernels

Hardware

Microkernel

User Processes Server Processes

User Mode

Kernel Mode

Microkernel System Structure

Microkernels

 Moves as much from the kernel into user space

 Mach is an example of microkernel

• Mac OS X kernel (Darwin) partly based on Mach

 Communication takes place between user modules using
message passing

 Benefits:

• Easier to extend a microkernel

• Easier to port the operating system to new architectures

• More reliable (less code is running in kernel mode)

• More secure

 Detriments:

• Performance overhead of user space to kernel space
communication

Microkernel vs. Layered Approach

Monolithic vs Microkernels
Monolithic Microkernel

Inter process
communication

Signals, sockets Message queues

Memory management Everything in kernel space (allocation
strategies, page replacement
algorithms,)

Memory management in user space,
kernel controls only user rghts

Stability Kernel more ‘crashable’ because of
large code size

Smaller code size ensures kernel
crashes are less likely

I/O Communication
(Interrupts)

By device drivers in kernel space.
Request from hardware handled by
interrupts in kernel

Requests from hardware converted
to messages directed to user
processes

Extendibility Adding new features requires rebuilding
the entire kernel

The micro kernel can be base of an
embedded system or of a server

Speed Fast (Less communication between
modules)

Slow (Everything is a message)

Modules

 Many modern operating systems implement loadable kernel modules
(LKMs)

• Uses object-oriented approach

• Each core component is separate

• Each talks to the others over known interfaces

• Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible

• Linux, Solaris, etc.

Hybrid Systems

 Most modern operating systems are not one pure model

• Hybrid combines multiple approaches to address performance, security,
usability needs

• Linux and Solaris kernels in kernel address space, so monolithic, plus
modular for dynamic loading of functionality

• Windows mostly monolithic, plus microkernel for different subsystem
personalities

 Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming environment

• Below is kernel consisting of Mach microkernel and BSD Unix parts, plus
I/O kit and dynamically loadable modules (called kernel extensions)

Linux System Structure

Monolithic plus modular design

